skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davis, Julian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Teleost fishes have evolved a number of sound-producing mechanisms, including vibrations of the swim bladder. In addition to sound production, the swim bladder also aids in sound reception. While the production and reception of sound by the swim bladder has been described separately in fishes, the extent to which it operates for both in a single species is unknown. Here, using morphological, electrophysiological and modelling approaches, we show that the swim bladder of male plainfin midshipman fish (Porichthys notatus) exhibits reproductive state-dependent changes in morphology and function for sound production and reception. Non-reproductive males possess rostral ‘horn-like’ swim bladder extensions that enhance low-frequency (less than 800 Hz) sound pressure sensitivity by decreasing the distance between the swim bladder and inner ear, thus enabling pressure-induced swim bladder vibrations to be transduced to the inner ear. By contrast, reproductive males display enlarged swim bladder sonic muscles that enable the production of advertisement calls but also alter swim bladder morphology and increase the swim bladder to inner ear distance, effectively reducing sound pressure sensitivity. Taken together, we show that the swim bladder exhibits a seasonal functional plasticity that allows it to effectively mediate both the production and reception of sound in a vocal teleost fish. 
    more » « less
  3. Peer mentoring is an integral part of our Cardinal Chemistry Scholars Program, an NSF S-STEM funded scholarship program for academically talented, financially disadvantaged undergraduates majoring in biochemistry and chemistry. The presentation will include how peer mentoring is integrated into our program, the ‘lessons learned’ and improvements made since our start in the Fall of 2018 as well as the adaptation to online environment necessitated by the pandemic. Participants will be actively engaged through a combination of group discussions and breakout activities. They will be given the opportunity to share their own experiences, exchange ideas, and support the development of one another's programs. Polling will be used to gather data and direct session discussions. 
    more » « less